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Abstract: Anthrax is a highly fatal zoonotic disease that affects all species of livestock. The study
aims to develop an early warning of epidemiological anthrax using machine learning (ML) models
and to study the effect of El Niño and La Niña oscillation, as well as the climate–disease relationship
concerning the spatial occurrence and outbreaks in Karnataka. The disease incidence data are divided
based on El Niño and La Niña events from 2004–2019 and subjected to climate-disease modeling to
understand the disease pattern over the years. Machine learning models were implemented using R
statistical software version 3.1.3 with Livestock density, soil profile, and meteorological and remote
sensing variables as risk factors associated with anthrax incidence. Model evaluation is performed
using statistical indices, viz., Cohen’s kappa, receiver operating characteristic (ROC) curve, true
skill statistics (TSS), etc. Models with good predictive power were combined to develop an average
prediction model. The predicted results were mapped onto the Risk maps, and the Basic reproduction
numbers (R0) for the districts that are significantly clustered were calculated. Early warning or risk
prediction developed with a layer of R0 superimposed on a risk map helps in the preparedness for
the disease occurrence, and precautionary measures before the spread of the disease.

Keywords: anthrax; basic reproduction numbers (R0); cluster analysis; ensemble technique; livestock;
machine learning; risk maps

1. Introduction

Anthrax is an acute, infectious, non-contagious, zoonotic disease that remains a threat
to public health throughout the world. The causative agent of anthrax is Bacillus anthracis,
which is a rod-shaped, spore-forming, soil-borne bacterium that survives in the soil under
suitable conditions for long periods of time [1]. B. anthracis is an extracellular pathogen
that replicates rapidly in the blood, conquering high density to make the host diseased [2].
The soil pH, organic calcium, potassium, and zinc concentrations of soil are believed to be
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correlated with the survival of spores [3]. Animals come into contact with the spores by
grazing grass closer to the surface when the grass is low or scarce, or by moving herds to
restricted areas when water is scarce [4]. The disease has not been eradicated in humans and
livestock in most African and Asian nations, in several southern European countries, the
Americas, and some Australian regions [5]. There is a slight dispute that anthrax is a disease
that occurs only at certain times of the year, and its occurrence in any particular location
is associated with temperature, rainfall or drought, soil, and vegetation. Nevertheless,
the literature documents that the conditions which influence outbreaks vary broadly from
location to location [4]. Many diseases that are viral, parasitic, and bacterial respond to
climate patterns, distribution of geography, inter-annual fluctuations, seasonality, or spatial
and temporal patterns [6]. Many of the world’s endemic diseases like anthrax are known to
be very subtle to long-term variations in climate. The application of ecological data to the
study of disease exhibits the relationship between disease and the environment, and also
helps to potentially predict the risk of disease outbreaks [7,8]. Variations in the climate of a
geographical region can be the consequence of several different environmental incidences,
comprising teleconnections [9]. Teleconnections are the concurrent variations in climate
patterns around the various regions of the globe. One example is the El Niño-Southern
Oscillation (ENSO), and it is considered one of the most vital factors that drive inter-annual
global climate variability [10]. Sea surface temperatures (SSTs) in the tropical Pacific Ocean
can change significantly from extraordinarily warm (El Niño) to cold (La Niña). El Niño and
La Niña periods typically last between two and seven years and are caused by significant
fluctuations in the Southern Oscillation, a pattern of air pressure that covers the tropical
Indian and Pacific Oceans [11]. The Indochina region is severely impacted by both El
Niño and La Niña seasons, which alter temperature, rainfall, and other weather-related
factors such as the occurrence of tropical cyclones. The influence of El Niño and La Niña
on Southeast Asia, 2000: Despite the possibility of some positive impacts, harmful effects
on crop yields, water supply, the possibility of floods and storms, and other factors that
affect human well-being and economic strength occur frequently. Indisputable ENSOW (El
Niño years, where the Pacific Sea’s temperature reached its highest point and the Southern
Oscillation Index reached its lowest point) were more strongly linked to droughts [12].

Since 1950, a total of 23 El Niño and 13 drought years were recorded, among the
13 drought years, only 3 were in non-El Niño years. Since 1980, most Indian droughts have
occurred during El Niño years, while not all El Niño years have seen droughts [13]. A
prime illustration of this was the drought in 2002, which had been accompanied by such a
strong El Niño and resulted in a more than 19% decrease in Indian monsoon rains from its
long-period average (LPA). Food grain output declined by 18% (38 million tonnes), while
agriculture’s contribution to GDP fell by 7% (a loss of almost USD 8 billion) [13]. ENSO had
a variety of effects on rainfall and rice productivity in different districts of Karnataka state.
Southwest (S-W) monsoon rains have been below average in all of Karnataka’s districts
throughout El Niño (strong, moderate, and mild) years, with the Mysore district showing
the biggest negative divergence from average (21.43%). In contrast, out of 25 districts,
15 had higher rice output than the national average, with the Gulbarga district having
the highest divergence from normal at 42.11%. The S-W monsoon rains have been above
average during the La Niña (strong, moderate, and weak) years in 12 districts, with
Bengaluru urban and Bidar districts recording the highest positive deviations (19.82% and
19.93, respectively) [14].

Globally, ENSO has an impact on inter-annual variation in weather patterns and
the possibility of regional extreme weather events such as droughts and floods [15]. The
incidence of multiple infectious diseases in endemic areas may be impacted by global
changes in temperature and precipitation trends in various locations, according to forecasts
from the Intergovernmental Panel on Climate Change (IPCC). Nonetheless, various factors,
such as a rise in the migration of animals between regions and countries, animal trades and
animal products, etc., may also have an impact on these alterations [16].
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Early alert for epidemics refers to the formulation of risk or modeled forecasts of
possible outbreaks based on systematically collected data from the monitored sites to allow
for effective and timely prevention and response actions. Climate-based early warning of
the disease has been anticipated as a potential tool in climate change adaptation for the
health sector [6]. Accurate disease prediction models would markedly improve epidemic
prevention and control capabilities [7]. Early warning or risk prediction in the medical
and livestock sector is not only a feasible but necessary tool to battle the re-emergence
and spread of infectious diseases. Consequently, machine learning is one of the most
promising technologies of artificial intelligence (AI) applications that played a key role in
biomedical, especially in the area of disease prediction to deal with big data, due to the
availability of numerous algorithms to solve complex problems [17]. The ability to predict
epidemics would provide a methodology for governments and healthcare providers to
react to outbreaks quickly, minimizing the effects and conserving scarce resources.

The variations of different land use in a landscape reveal current and historical pro-
cesses that shape the landscape’s dynamics and organisation, and also spread the disease
ability. Recognizing this dynamic behavior is also important in light of the impacts of
climate change. These days, remotely sensed data quests carried out by various private and
public organizations allow for the monitoring and quantification of environmental changes
at various space-temporal resolutions. Precise information about the origin and destination
of both the growing season of vegetation would be extremely crucial for monitoring and
modeling the consequences of climate change on ecosystem functioning [18,19].

Descriptive observations and satellite measurements could be used to support study
results on growing period variability. Many such public health study results in Africa
and Asia used GIS to identify environmental factors, particularly vector-borne diseases.
Worldwide satellite-based surveillance of appropriate climatic parameters could aid in
mapping occurring anomalies with the goal of forecasting the spatial distribution of risk
associated with disease occurrence and spreading. Such data can provide enough time
to prevent outbreaks and conceivably reduce the impact and spread of environmentally
associated diseases [18].

Remote sensed data are currently being used by epidemiologists to conduct an investi-
gation of a wide range of vector-borne diseases. To map and characterize vector habitats,
correlations among specific node meteorological factors (e.g., temperature, humidity, land
cover, etc.) as well as vector density are used. The fundamental concept would be that
data collected remotely could contain dynamic predictor variables of Earth’s processes that
can be utilized to describe niche priorities of certain medically significant factors affecting
disease processes. Furthermore, due to the consistency with which they are acquired, re-
motely sensed information includes a synoptic depiction of the environment at appropriate
temporal and spatial scales [18–20].

The current study aims to analyze anthrax cases in livestock animals between 2004 and
2019 to understand spatio-temporal persistence and disease burden over the past decades,
directional trend, identify the significant presence of disease clusters and find the effect of
El Niño and La Niña oscillation in early warning of an anthrax outbreak among livestock
in the state of Karnataka, India, using machine learning models.

2. Materials and Methods
2.1. Data Collection
2.1.1. Disease Incidence and ENSO Events Classification

The Incidence is usually expressed as a rate and is a measure of the frequency in
which a disease or event occurs in a given population over a given period [21]. The current
study includes the incidence data of anthrax among livestock throughout Karnataka.
Incidence data is divided into two sets based on ENSO events. National weather service
climate prediction center, the website https://ggweather.com/enso/oni.htm (accessed on
8 February 2021) was used to obtain information on ENSO events. The Oceanic Niño Index
(ONI) has become a widely acknowledged criterion for distinguishing El Niño (warm) and

https://ggweather.com/enso/oni.htm
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La Niña (cool) episodes in the tropical Pacific by the National Oceanic and Atmospheric
Administration (NOAA). The Niño 3.4 region (i.e., 5◦ N–5◦ S, 120–170◦ W) has an ongoing
3-month mean SST anomaly. Events are classified as 5 sequential overlapping, 3-month
periods that are either at or below the −0.5◦ anomaly for cold events (La Niña) are either at
or above the +0.5◦ anomalies for warm events (El Niño).

As a result, the study periods were categorized as El Niño and La Niña years based
on the occurrence of ENSO events. There were six El Niño events (2004, 2006, 2009, 2014,
2015, and 2018) and seven La Niña events (2005, 2007, 2008, 2010, 2011, 2016, and 2017) that
occurred between 2004 and 2020 (Figure 1).

Figure 1. (A) Diagrammatic representation of machine-learning powered early warning.
(B) Flowchart depicting the risk modeling and risk mapping.
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Karnataka is a state in India with 191,791 km2 area, 181 blocks spread across 30 districts,
and 29,340 villages holding 27.7 million livestock animals. The current study included all
30 districts of the state over the period of 2004–2019. The village-level livestock anthrax
outbreak data were retrieved from the Dept. of Animal husbandry, Bengaluru, Karnataka,
India. The outbreak data were spatial and temporal referenced and cross-checked for
coordinate data (X, Y), species, district codes, and month of occurrence and cleaned for all
types of errors before storing the data in a database.

2.1.2. Livestock Data

India has an abundance of livestock, with around 535.78 million animals overall, of
that which 192.49 million comprise cattle and 50.42 million are exotic/crossbred. In fact,
there are 109.85 million buffaloes, 9.06 million pigs, 148.88 million goats, 74.26 million
sheep, and 0.44 million Mithun and yaks. (Department of Animal Husbandry & Dairying
(DAHD)- 20th Livestock Census of India). The livestock population data throughout
Karnataka in five major animal species, i.e., cattle, buffalo, sheep, and goats, were collected
from the 20th livestock census of India at the village level.

2.1.3. Meteorological Data

The Meteorological/remote sensing parameters include soil moisture (kg/m2), poten-
tial evaporation rate (w/m2), specific humidity (kg/kg), rainfall (kg/m2/s), air temperature
(k), wind speed (m/s), and surface pressure (pa). These parameters were obtained from
the Global Land Data Assimilation System https://ldas.gsfc.nasa.gov/gldas (new and
reprocessed GLDAS version 2) (accessed on 10 February 2021), which uses advanced land
surface modeling and data integration methods to capture satellite and ground-based
observed data with a spatial resolution of 0.25◦ × 0.25◦ and a temporal resolution retrieved
in network common data format (netCDF). This includes metadata as well as data that
have a multidimensional array and data dimensions. The data were extracted using the
‘ncdf4’ package in the R tool.

2.1.4. Remote Sensing Data

The method of detecting and tracking the physical characteristics of an environment
by measuring its emitted and reflected radiation from a distance is known as remote sens-
ing [22]. Remote sensing data from the Moderate Resolution Imaging Spectroradiometer
(MODIS) satellite include the enhanced vegetation index (EVI, 16-day interval), potential
evapotranspiration (PET, 16-day interval, 500 m), land surface temperature (LST, 8-day
interval, 1 km), normalized difference vegetation index (NDVI, 16-day interval, 500 m),
potential leaf area index (LAI, 16-day interval, 500 m), and were extracted with image
products such as MOD16A2, MOD11A2, MOD13A1, and MOD15A2H [23,24]. These pa-
rameters are downloaded in HDF format with different spatial and temporal resolutions.
The data were extracted as HDF files and converting them to GeoTIFF files using the R
packages “gdalutils” and “modis”. Each prediction must be a raster layer reflecting the
variable of interest. All the variables are arranged as raster (grid) style files by using the R
package “raster” [25]. Remote sensing data is collected and divided into two different data
sets based on El Niño and La Niña years between 2000 and 2019.

2.1.5. Soil Profile

The soil profile is a vertical section of the soil that depicts all of its horizons. From
the soil surface to the parent rock material, the soil profile is measured. Some variations
in animal health among geographic areas are associated with variations in soils and their
properties [26]. Some animal infectious diseases’ origin may be from particular soils, and
more direct effects may be expected if the pathogen can survive, grow, and reproduce in
the soil [27]. The database of Karnataka soil health data (ICRISAT Development Centre,
Government of Karnataka, 2016) was used to obtain the soil parameters used in the current
study, which include potassium, phosphorus, boron, zinc, sulphur carbon, and pH.

https://ldas.gsfc.nasa.gov/gldas
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2.2. Spatial Endemicity

The year-wise outbreak of anthrax was analyzed to understand the disease occurrence
pattern related to spatial and temporal endemicity [28]. The study period was grouped
into two groups based on El Niño and La Niña years to identify potential changes in
the reporting of the disease over time and space. The cumulative outbreak of cases was
represented at the village level using R software for each El Niño and La Niña year from
2004 to 2019.

2.3. Getis-Ord Gi* Spatial Statistics to Identify Hotspots (Spatial Autocorrelation)

The use of Getis–Ord (Gi*) spatial statistics classified hotspots on freeways from
an IM database when considering selected impact attributes. Within the context of the
conceptualized spatial relationship, the Gi* spatial statistics jointly measure the spatial
dependence effect of the frequency and attribute values [29]. Getis Ord’s Gi* statistics were
used to detect the evidence of any spatial clusters. Getis Ord’s Gi* statistics can accurately
discriminate between hot spots and cold spots. In spatial autocorrelation, spatial units that
are close together have more in common than units that are far apart [30], and it investigates
the covariations for the properties of observations within a two-dimensional geo-surface
in the study area. Spatial autocorrelation was performed in the present study to address
the problems associated with spatial units that bear some measurable attributes [31]. The
Getis Ord’s index was calculated using the statistical program R. When the GI value is
more than 0, a clustered pattern is observed, and when it is less than 0, a dispersed pattern
is observed.

2.4. Space-Time Cluster Analysis

To detect the temporal, spatial, and space-time clusters of anthrax in Karnataka for
16 years, the Poisson-based clustering models based on space-time scan statistics were
implemented in SaTScan software v9.6. In the case of SaTScan, to detect spatial clusters
across a study area, a series of moving windows with varying diameters are used, likewise,
temporal clusters are detected and it places ellipses or circles of constantly varying sizes
over a three-dimensional study area [32,33]. The circles with observed values that are
higher than expected values are reported as clusters. They can be used in a variety of
settings and come in a variety of sizes. In order to conduct cluster analysis on a dataset with
each parameter having a disease status (case vs. control), along with spatial and temporal
properties, for the SaTScan studies, village-wise latitude and longitude coordinates were
taken into consideration [34]. The model had been applied to the case dataset for each year,
using the total number of cases for each epi unit (village) in a specific year while accounting
for the actual population of each epi unit with a significance value of (p ≤ 0.05) in SaTScan.

2.5. Identifying Risk Factors by Linear Discriminant Analysis

Linear discriminant analysis (LDA), a modified algorithm based on Fisher’s linear
discriminant, is a technique used in statistics and machine learning to distinguish between
two or more classes. The risk parameters were thoroughly analyzed using discriminant
analysis, and the mathematical relationship among them was developed to provide a solid
base for precisely understanding the influence of the parameter on its calculation and
prediction [35]. LDA was used to determine whether there were any differences in risk
factors between regions where a persistent and non-persistent space-time cluster was found
to exist using SaTScan. LDA was used to assess a maximum of 12 environmental/remotely
detected factors using a binary response (0/1) with clustered regions equal to 1 and non-
clustered regions equal to 0, respectively. In this study, the LDA was performed with R
programming language, with a statistical significance of (p ≤ 0.05) for all the parameters.

Linear discriminate analysis for multiple classes:

Sk = ∑x(n)∈Ci
(x(n)−mi)(x(n)−mi)

T
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Sw =
c

∑
k

sk

where: Sk = scatter matrix
X = number of samples
Sw = within class scatter
C = number of distinct classes

sb =
c

∑
i=1

Ni(mi −m)(mi −m)T

where: Sb = between class scatter
m = mean of all the data points

m =
1
N

n

∑
i=1

xi

w = eig
(

s−1
w sb

)
2.6. Risk Modelling and Mapping

Data on risk factors generated over 16 years (2004–2019) were pooled at the grid level.
Climate–disease correlation modeling was used to generate the risk map (2004–2019) for the
Karnataka state, which estimates the disease’s spatial incidence. The information on risk
factors was acquired, subjected to pre-processing, and annotated with disease conditions
and thus the corresponding latitude and longitude.

To generate the most accurate prediction with enhanced performance, risk estimation
is performed employing machine learning models. Due to overfitting or underfitting,
ML models frequently may not operate effectively. The overfitting or underfitting of a
model is decided by a bias-variance trade-off. The overall error of a model is dependent
on the bias and variance of the model. Bias is an error from erroneous assumptions in
the learning algorithm. Due to high bias, an algorithm can ignore important relationships
between features and target outputs. Variance is an error caused by the training set’s
vulnerability to minor variations. Because of the high variance, an algorithm will model
the random noise in the training data instead of the expected outputs [36]. Random forest
(RF), gradient boosting machine (GBM), artificial neural network (ANN), generalized linear
models (GLM), generalized additive models (GAM), flexible discriminant analysis (FDA),
support vector machine (SVM), multiple adaptive regression splines (MARS), naive Bayes
(NB), classification tree analysis (CT), and adaptive boosting (ADA) are the eleven machine
learning models employed in the current study for disease modeling. Predictions for
combinations of predictor factors were generated using a range of model artifacts that
were produced by different modeling techniques. Response graphs have been created
in order to better interpret and evaluate model predictions. The discriminating capacity
of the fitted models was evaluated using receiving operating characteristic (ROC) curve,
Cohen’s kappa (Heidke skill score), true skill statistics (TSS), area under ROC curve (AUC),
ACCURACY, ERROR RATE, F1 SCORE, and logistic loss (LOGLOSS). The accuracy of
predictions based on the presence (1) or absence (0) of data was assessed using these
metrics. The results of individual predictions by different model methods were combined
using Raster Stack. All of the models’ overfitting was assessed as it may result in incorrect
estimates of the coefficients, p-values, and R-squared values (<0.01 significant) [37]. Over-
fitting is presumed to have occurred when the model accuracy is high for the training data
but subsequently drastically decreases with new data [38,39]. In the current study, the cross-
validation approach was employed to evaluate the over-fitting of models by keeping 70%
of the data on the training set and 30% of the data on the testing set. It is suggested to use
the combined prediction outcomes of several models, that are evaluated on a scale of 0 to 1,
and average the score given the best prediction instead of focusing on a single prediction
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model. The overall average was determined by taking into consideration if the model
satisfies the following criteria: kappa > 0.60, TSS > 0.80, ROC > 0.90, ACCURACY > 0.90,
AUC > 0.90, ERROR RATE < 0.10, LOGLOSS < 0.30, and F1SCORE > 0.90 [40–42]. Different
risks are connected with deviations from the normal pattern of meteorological and remote
sensing factors, as well as soil parameters and densities of livestock in both space and time,
which is depicted as a schematic framework for generating the risk map (Figure 1A,B).

2.7. Basic Reproduction Number (R0)

The estimated number of additional infectious disease cases that result from the initial
incident in a community that is susceptible is known as the basic reproductive number
(R0). The threshold of R0 is where its significance lies. The number of affected people will
increase if R0 > 1. Additionally, the number will drop if R0 < 1. The transmission rate of a
disease is expressed by R0. The basic reproduction rate is a pandemic’s common phrase
since it explicitly reflects the virus’s nature. There are numerous methods available for the
estimation of the R0 [43]. Maximum likelihood estimation (ML), exponential growth rate
(EG), attack rate (AR), time-dependent method (TD), sequential Bayesian approach (SB),
and various other methods can be implemented to calculate R0 [44]. In the present work,
R0 was estimated using EG, ML, and AR approaches.

2.7.1. Exponential Growth Rate (EG)

The number of cases increases rapidly during the initial stages of an epidemic. The
paradigm for exponential growth (EG) would be a condensed form. A rate of growth that
continues constantly throughout time is referred to as exponential growth [45]. The basic
reproduction number R0 could be deduced from the exponential epidemic growth curve.
In the initial stages of an epidemic, R0 is associated with exponential growth as follows:

R0 =
1

M(−r)

Here, r is the exponential growth rate and M is the moment-generating function of the
GT distribution. Integers constitute the daily confirmed cases data. In order to obtain the
value of the growth rate, r, Poisson regression is used [44].

2.7.2. Maximum Likelihood Estimate (ML)

White and Pagano’s maximum likelihood (ML) is predicated on the idea that the
quantity of secondary cases caused by an affected individual is Poisson distributed, with R
representing the expected value. Optimizing log-likelihood over an exponential growth
phase yields R. The optimal period can be determined using the deviation R-squared metric.
No assumption has been made about population mixing [46].

2.7.3. Attack Rate Estimate (AR)

The percentage of the population that gets an infection over time is referred to as the
attack rate (AR) [46]. The basic reproduction number is related to AR by:

R0 = − log((1−AR)/s)
AR− (1− s)

where s is the basic vulnerability rate of the population.
All of the methods are aimed to calculate the initial exponential growth from oc-

currence counts. Besides plotting the R0 on the anticipated risk maps, we gave a clear
and in-depth insight into how a disease affects a specific area. Basic reproduction rate
(R0) calculations were made using R statistical software (version 3.6.3). It is essential to
evaluate a disease’s potential for transmission, predict the scale of epidemics, and spread
awareness of preventative actions. Superimposing the R0 on the risk map predicted using
the density of livestock, soil parameters, meteorological, and remote sensing parameters
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provides a visualized and comprehensive view of the likelihood and impact of a disease in
a given region.

2.8. Statistical Software

R statistical software version 3.1.3 (version 3.4.3, Vienna, Austria: R Foundation for
Statistical Computing) was used to perform statistical analyses, risk maps, and disease
predictions. Data mining, computation, and graphical display were all done using R as
an integrated suite. When data processing, integrating, annotating model fitting, and
computing R0, the R packages plyr, dplyr, rgdal, raster, data.table, openxlsx, tmap, sp,
spdep, sf, BAMM tools, foreign, geosphere, MASS, biomod2, dismo, mgcv, randomforest,
mda, gbm, earth data extraction, data alignment, annotation, analysis, modeling, and risk
mapping were all performed using Getis ord’s Index. SaTScan v9.6 was implemented to
obtain the spatial and temporal clusters in the respective study area.

3. Results
3.1. Temporal Distribution of Weather Parameters

The temporal distribution of weather parameters viz., Air temperature, soil moisture,
vegetative Index, El Niño, and La Niña oceanic index were plotted (Figure 2). The average
sea temperature anomaly as captured under the ONIA for the 6 El Niño years was 0.41 ◦C,
while that for the 7 La Niña years was −0.55◦. The average air temperature for El Niño
and La Nino years in the study year was 23.91 k and 23.16 k, respectively. The average
vegetative index was 0.41 and 1.45 in El Niño and La Niña years, respectively (Table 1).

Figure 2. Pattern of behavior of weather parameters in El Niño and La Niña.

Table 1. Descriptive statistics of parameters included in the study from 2003 to 2020.

Parameters
El Niño La Niña

Mean SD Max. Min. Mean SD Max. Min.

Air temperature (k) 23.91 1.69 27.43 13.21 23.16 1.69 27.13 13.21

Soil moisture (kg/m2) 23.37 2.31 28.87 13.21 23.94 2.42 30.15 13.21

Rainfall (kg/m2/s) 1.07 0.96 14.74 0.89 1.06 0.96 14.74 0.89

Vegetative index (−1 to +1) 0.41 0.09 0.71 -0.03 0.43 0.09 0.73 −0.09
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3.2. Spatial Endemicity of Anthrax

The dataset on the incidence of anthrax in Karnataka, India, throughout the 16-year
study period ranging between 2004 and 2019 is split into two distinct sets based on ENSO
events. Figure 3A,B illustrate the distribution of disease based on analysis of incidence data
from El Niño and La Niña years, indicating the endemic nature of the disease in the study
region. During the El Niño years, the highest incidence was observed in the Bellary district
(range > 40) and moderately high incidence in Chikkaballapura and Davanagere districts
(range 21–40). During the La Niña years, the highest incidence was not observed in any
district (range > 40) and moderately high incidence was observed in Bellary, Chikkabal-
lapura, Davanagere, and Tumkur districts (range 21–40). Despite the fact that anthrax in
livestock continued to be a widespread disease throughout all of the years under study, the
seasonal climatic pattern could be seen each year. The infection pressure was high during
September and October in El Niño years and during August and September in La Niña
years with September being the month where it peaks every year. During the winter, there
was the lowest incidence of disease.

Figure 3. District-wise cumulative incidence of anthrax in Karnataka (2004–2019), (A) El Niño years
& (B) La Niña years, respectively.

3.3. Spatial Autocorrelation of Anthrax

The dataset was verified for the presence of any clusters in the entire dataset prior
to hotspot analysis (Getis-Ord Gi*) using a specific method called Moran’s I statistic, a
technique for defining global spatial autocorrelation [47]. A prerequisite for hotspot analysis
is the presence of clusters within the dataset which gives the output value a z-score, where
a high z-score is indicative of a hotspot or cluster. A high z-score for El Niño and La Niña
years indicated the presence of hotspots, whereas a negative z-score indicated a cold spot
(Figure 4A,B). The Getis-Ord Gi* analysis is being utilized to identify villages/districts with
high risks of disease incidence for further analysis and modeling.
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Figure 4. Hotspot analysis (2004–2019), (A) El Niño years, and (B) La Niña years, respectively.

3.4. Space-Time Cluster Analysis of Anthrax

A discrete Poisson model was used after detecting the existence of a hotspot using
Getis-Ord Gi* analysis, and the number of cases of anthrax in each location was assumed
to be Poisson distributed. When there are no covariates and the null hypothesis is true,
the estimated number of cases in each field is proportional to its population size. The
Poisson data was analyzed with purely temporal, purely spatial, and space-time models.
The probability function was maximized across all window positions and sizes, and the
cluster with the highest likelihood is the most probable and the least likely to have occurred
by chance.

Space-time cluster analysis revealed the existence of disease clusters in the central
and southeast regions of El Niño and La Niña years from 2004–2019. The spatial variation
in El Niño and La Niña years indicated two significant clusters of high risk that were
contributing to an increasing pattern in anthrax. From 2004 to 2019, the village-level disease
clustering was identified and disease incidence was represented by red colored dots within
the significant red circles. This indicates the villages with a high risk of disease incidence,
while a pink circle dot represents villages having disease incidence but are not part of
significant clusters (Figure 5A,B).

3.5. Linear Discriminant Analysis of Anthrax

To identify the ecological, environmental, and other risk factors responsible for the
major cluster development after the space-time cluster model identified significant disease
clusters. To identify important risk factors (climate, soil profiles, remote sensing, and host)
essential for the formation of disease clusters for data at the village level, further, linear
discriminant analysis (LDA) was employed. The determining risk factors were then applied
to the modeling and prediction of the spatial risks. Table 2 displays the LDA results.
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Figure 5. Space-Time Analysis (2004–2014), (A) El Niño years, and (B) La Niña years, respectively.
Where, red spots represent high risk disease incidence and pink spots represent incidence with
negligible risk.

Table 2. Results of discriminant analysis for El Niño years (2004–2019).

Parameters Mean (Presence) SD F Value p Value 95% CI

Air_Temperature 23.91 1.69 37.83 <0.05 * 23.13 to 24.68

EVI 1.32 0.11 0.54 0.466 1.31 to 1.326

LAI 2.01 2.44 0.78 0.379 1.84 to 2.17

LST 27.9 3.26 1.04 0.309 27.65 to 28.14

NDVI 1.44 0.12 0.00 0.947 1.43 to 1.441

PET 943.96 259.63 2.49 0.116 913.31 to 974.60

Potential_evaporation_rate 245.87 33.59 4.66 0.032 * 240.45 to 251.28

Rain_precipitation_rate 1.07 0.96 0.65 0.423 1.01 to 1.12

Soil_moisture 23.37 2.31 0.58 0.449 23.23 to 23.50

Specific_humidity 1.08 0.96 2.35 0.128 0.97 to 1.19

Surface_Pressure 85,809.19 6584.11 1.83 0.178 85,143.10 to 86,475.27

Wind_speed 4.19 0.99 22.32 <0.05 * 3.84 to 4.54

* 5% percent level of significance.

In disease risk modeling, environmental factors that had a p-value of 0.05 or less were
found to be significantly correlated with disease occurrence. In El Niño years, the study
identified potential risk indicators such as air temperature, wind speed, and potential
evaporation rate. The significant risk factors for the La Niña years include air temperature,
EVI, NDVI, specific humidity, and wind speed (Table 3). The primary significant risk
metrics in the two different groups were placed over the significant clusters (El Niño and
La Niña years), which positively influenced the disease incidence.
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Table 3. Results of discriminant analysis for La Niña years (2004–2019).

Parameter Mean (Presence) SD F Value p Value 95% CI

Air_Temperature 23.16 1.69 22.535 <0.05 * 22.59 to 23.73

EVI 1.31 0.1 3.922 0.049 1.30 to 1.32

LAI 2.03 2.44 2.576 0.111 1.75 to 2.31

LST 26.96 3.32 0.622 0.431 26.77 to 27.15

NDVI 1.45 0.12 7.959 0.005 * 1.43 to 1.47

PET 1015.63 249.43 0.383 0.537 1004.69 to 1026.57

Potential_evaporation_rate 218.82 32.09 0.770 0.382 216.82 to 220.82

Rain_precipitation_rate 1.06 0.96 2.732 0.100 0.95 to 1.17

Soil_moisture 23.94 2.42 3.087 0.081 ** 23.64 to 24.24

Specific_humidity 1.07 0.96 9.857 0.002 * 0.86 to 1.28

Surface_Pressure 85,602.37 6581.58 3.074 0.082 84,784.33 to 86,420.41

Wind_speed 3.72 0.95 22.909 <0.05 * 3.40 to 4.04

* 5 percent level of significance, ** 10 percent level of significance.

3.6. Anthrax Risk Assessment and Estimation

The significant ecological and environmental risk factors identified using LDA were
subjected to climate-disease modeling. Maps were generated based on affected (case)
and unaffected (control) areas of anthrax (Figure 6). In the map (Figure 6A–C), the case
data are represented by red circles, indicating the places having the disease incidences at
different thresholds, and the control data are represented by blue dots that indicate the
places without incidence of anthrax.

Several models using ensemble technology were used for the case-control data. The
models’ RF, ADA, and GBM are the most appropriate for both El Niño and La Niña
years. The statistically defined evaluation metrics, including ROC, TSS, Cohen’s Kappa,
ACCURACY, AUC, F1SCORE, ERROR RATE, and LOGLOSS, were used to determine
which models were the best fit. The average score was calculated and recorded for both
groups (Table 4A,B).

Figure 6. Cont.
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Figure 6. El Niño and La Niña years’ outbreaks are depicted on a map of Karnataka, respectively.
(A) Case data: red-colored circles denote locations where anthrax has been reported, (B) control data:
blue-colored dots denote locations where anthrax has not been reported, and (C) case-control data:
displays both the existence and absence of anthrax incidence.

3.7. Anthrax Risk Prediction and Mapping

In El Niño years, the disease risk was observed in the northeastern and southern
regions, while the western part of the state was not showing any risk (Figure 7A). During
La Niña years, the risk was concentrated in the state’s southern, northeastern, and central
regions (Figure 7B), indicating severe disease can be expected in these areas.

Figure 7. Anthrax risk prediction map (2004–2019) El Niño years (A) and La Niña years (B), respec-
tively. Where the red spots represent the disease incidence having high risk.
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Table 4. Model evaluation table (El Niño years). Model evaluation table (La Niña years).

Sl.No Model Model Specification KAPPA ROC TSS AUC ACCURACY ERROR
RATE F1 SCORE LOGLOSS

1 GLM

E(Y
∣∣X) = µ = g−1(Xβ)

Y—Expected Value, X—Conditional,
Xβ—Linear Predicator,
g—Link Function

0.698 0.943 0.769 0.9426 0.875 0.125 0.885 0.295

2 GAM

g(E(Y)) =
β0 + f1(x1) + f2(x2) + ........ + fi(xi)
Y—Response Variable, g—Link
Function, fi—Specified Parametric
Form, xi—Predicator Variable

0.698 0.943 0.769 0.9426 0.875 0.125 0.885 0.295

3 RF

Y=
n
∑

i=1
f(tn)

Y—Average of aggregated predictions
of the multiple decision trees,
tn—multiple decision trees trained on
different subset of the same training
data

0.849 0.999 0.972 0.9987 0.982 0.018 0.980 0.107

4 GBM

f (x) =

arg minθ

n
∑

i=1
L(yi , θ) +

M
∑

m=1
ηρmφm(x)

m—Iteration, η—Learning Rate,
ρm—Step length

0.634 0.966 0.863 0.9660 0.932 0.068 0.936 0.254

5 NNET
Y = f

(
n
∑

i=1
xiwi

)
+ b

Y—Output, xi—Inputs, wi—Weights,
b—Bias

0.004 0.527 0 0.5269 0.629 0.371 0.500 NA

6 MARS
f̂ (x) =

k
∑

i=1
ciBi(x)

ci—Constant Coefficient, Bi(x)—Basis
Function

0.595 0.942 0.773 0.9416 0.885 0.115 0.902 0.301
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Table 4. Cont.

Sl.No Model Model Specification KAPPA ROC TSS AUC ACCURACY ERROR
RATE F1 SCORE LOGLOSS

7 FDA ηl(x) = XT βl 0.625 0.805 0.609 0.8047 0.832 0.168 0.873 5.818

8 CT f (x) =
T
∑

j=1
wj I

(
x ∈ Rj

)
0.764 0.95 0.787 0.9504 0.889 0.111 0.921 0.255

9 SVM
{

x : f (x) = xT β + β0 = 0
}

0.645 0.931 0.759 0.9307 0.871 0.129 0.878 0.439

10 NB

P(c
∣∣∣x) = P(x|c)P(c)

P(x)
P(c|x)—Posterior Probability,
P(x|c)—Likelihood,

P(c)—Class Prior Probability,
P(c)—Predictor Prior Probability

−0.46 0.819 −0.309 0.8189 0.319 0.681 0.143 9.099

11 ADA
FT(x) =

T
∑

t=1
ft(x)

ft—Weak Learner, x—Input, T¯ Tth
Positive or Negative Classifier

0.838 0.924 0.847 0.9237 0.925 0.075 0.941 2.600

Sl.No Model Model Specification KAPPA ROC TSS AUC ACCURACY ERROR RATE F1SCORE LOGLOSS

1 GLM

E(Y
∣∣X) = µ = g−1(Xβ)

Y—Expected Value, X—Conditional,
Xβ—Linear Predicator,
g—Link Function

0.472 0.867 0.624 0.8670 0.803 0.197 0.886 0.419

2 GAM

g(E(Y)) =
β0 + f1(x1) + f2(x2) + . . . . . . . .+ fi(xi)
Y—Response Variable, g—Link
Function, fi—Specified Parametric
Form, xi—Predicator Variable

0.472 0.867 0.624 0.8670 0.803 0.197 0.886 0.419
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Table 4. Cont.

Sl.No Model Model Specification KAPPA ROC TSS AUC ACCURACY ERROR
RATE F1 SCORE LOGLOSS

3 RF

Y=
n
∑

i=1
f(tn)

Y—Average of aggregated predictions
of the multiple decision trees,
tn—multiple decision trees trained on
different subset of the same training
data

0.765 1 0.99 0.9998 0.997 0.003 0.995 0.093

4 GBM

f (x) =

arg minθ

n
∑

i=1
L(yi , θ) +

M
∑

m=1
ηρmφm(x)

m—Iteration, η—Learning Rate,
ρm—Step length

0.629 0.973 0.85 0.9725 0.926 0.074 0.939 0.238

5 NNET
Y = f

(
n
∑

i=1
xiwi

)
+ b

Y—Output, xi—Inputs, wi—Weights,
b—Bias

0.018 0.512 0.025 0.5125 0.671 0.329 0.500 NA

6 MARS
f̂ (x) =

k
∑

i=1
ciBi(x)

ci—Constant Coefficient, Bi(x)—Basis
Function

0.595 0.952 0.779 0.9524 0.893 0.107 0.912 0.274

7 FDA ηl(x) = XT βl 0.543 0.75 0.5 0.7498 0.813 0.187 0.870 6.469

8 CT f (x) =
T
∑

j=1
wj I

(
x ∈ Rj

)
0.69 0.937 0.784 0.9367 0.893 0.107 0.918 0.270

9 SVM
{

x : f (x) = xT β + β0 = 0
}

0.689 0.938 0.749 0.9379 0.876 0.124 0.914 0.388
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Table 4. Cont.

Sl.No Model Model Specification KAPPA ROC TSS AUC ACCURACY ERROR
RATE F1 SCORE LOGLOSS

10 NB

P(c
∣∣∣x) = P(x|c)P(c)

P(x)
P(c|x)—Posterior Probability,
P(x|c)—Likelihood,

P(c)—Class Prior Probability,
P(c)—Predictor Prior Probability

−0.302 0.714 −0.199 0.7136 0.301 0.699 0.076 9.829

11 ADA
FT(x) =

T
∑

t=1
ft(x)

ft¯Weak Learner, x—Input, T¯Tth

Positive or Negative Classifier

0.886 0.94 0.88 0.9399 0.950 0.050 0.963 1.733
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Risk maps offer an enhanced digital platform for a comprehensive view of the likeli-
hood and impact of disease and to develop synergies in a given study area. This increases
public awareness, leads the policy makers and planners to take appropriate action that
reduces risk to life, and improves risk management governance by highlighting risk man-
agement efforts. In this study, a new statistical approach was developed for risk mapping
to improve the accuracy of short-term risk prediction. The disease data were modeled with
significant predictor variables identified by the LDA function, such as meteorological data,
remote sensing data, and host parameters through ensemble machine learning models.

3.8. Estimation of Basic Reproduction Number (R0) of Anthrax

The final step of risk assessment is to estimate the basic reproduction number (R0) and
to model R0 with risk already estimated using various risk factors. The result of this stage
is more easy to interpret and projectable for the development of suitable preventive actions.
The R0 is defined as the exact number of projected secondary cases that one primary case
in a susceptible population can generate. This value of R0 has a significant impact on both
the daily incidence and the extent of the outbreaks, indicating that more animals would
become sick in the foreseeable. The management of diseases in the area can be aided by
these insights.

The R0 was estimated for the districts falling in the significantly clustered zone gen-
erated by SaTScan and Getis Ord index in the study between 2004 and 2019 based on El
Niño and La Niña years. The locations with an R0 value exceeding 1.00 have an increasing
trend in disease incidence, complexity, greater risk, and vice versa. The R0 values for El
Niño years ranged from 0.76 to 2.11, indicating that the southern and eastern regions are
particularly vulnerable to anthrax (Figure 8A). Throughout the La Niña years, the R0 value
ranged between 0.98 and 1.99 with high symptom severity in the southern, northeastern,
and central regions (Figure 8B). Furthermore, the mobility of infected animals from one
location to the other could cause the regions with low R0 values to change to high R0 values
in the coming years.

Figure 8. Anthrax R0 values on risk prediction map district wise (2004–2019) (A) El Niño years and
(B) La Niña years, respectively.

4. Discussion

In many scientific and societal domains, the terms early warning and risk prediction are
employed to express data on an impending dangerous hazard that enables prompt action to
decrease the hazards it poses. Among many other things, early warning or risk prediction is
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available for natural geophysical, biological, complex socio-political events, industrial, and
health threats. A key component of disease risk reduction is an early warning of livestock
diseases, which can frequently stop a risk from growing into a veterinary medical crisis by
averting the loss of animal wealth and lessening the economic and material effects [48]. This
study results in the recognition of machine learning models for early warning of anthrax
livestock disease with respect to El Niño and La Niña oscillations and establishes a new
approach to the alert system. It may be useful for policymakers and planners to enhance
the risk management process. Early recognition of any epidemic animal disease is an
important factor that influences the control of disease and helps reduce its socio-economic
impact on the country [49]. The persistence of anthrax is strongly correlated with soil
pH, as the spore prefers alkaline soil with a relatively high pH for its survival [50]. In the
present study, anthrax cases were persistently seen from mildly acidic to mildly alkaline
soil PH. Therefore, it can be concluded the pH range of mild acidic to relatively high
alkaline is conducive to the survival of the bacterium in soil and the occurrence of the
disease. B. anthracis, the responsible bacterium, might cycle between spore germination,
vegetative cell outgrowth, and sporulation, which can result in an overall rise in spore
counts and subsequent anthrax outbreaks [51]. Additionally, it has been shown that anthrax
outbreaks typically happen during the summer season after protracted periods of heavy
rain [52]. El Niño is anticipated to cause droughts in India. A prime illustration of this
was the drought in 2002, which was accompanied by a strong El Niño and resulted in a
more than 19% decrease in Indian monsoon rains out of its long-term average (LPA) [13].
The model analysis depicted the influence of the climate variables on the occurrence of
disease. Walsh and his team were among the first to investigate the viability of anthrax
along a wide range of northern latitudes, and their study showed an overall risk that,
in a broad sense, matched other regional study results regionally and cooperated with
earlier reports from Kazakhstan and the United State [8,53]. In our study, we found that
the risk parameters, viz., air temperature, soil moisture, NDVI, specific humidity, wind
speed, and potential evaporation were significantly influencing the disease occurrence.
The research of Margaret Driciru et al. revealed that annual precipitation, exchangeable
potassium, annual mean temperature, soil pH, and calcium were the predictor variables
favoring the survival and distribution of anthrax spores. Our results were on par with
the above result. as the epidemiological triad states the disease can occur only if the
environment helps the pathogen travel to the susceptible host [26]. According to a study
by Wendy et al., grassland structure, foraging behavior, intake rates, and the chance that
forage regions intersect pathogenic accumulations in the environment are all major risk
factors for outbreaks. Transmission from soil-borne diseases will also depend on all these
factors [54].

Spatial autocorrelation analysis provided a high degree of correlation and clustering
of the anthrax outbreaks. Many infectious diseases have distinct regional distributions and
seasonal variations, which suggests that they are linked to weather and climate. Studies
have demonstrated that temperature, precipitation, and humidity can affect many diseases
and vectors’ lifecycles (indirectly and directly through ecological variations), which could
have an impact just on the timeliness and severity of disease outbreaks. Numerous studies
have found an association between climatic variations and the occurrence of diseases.
Early warning or risk prediction is an instrument for communicating information about
impending risks to vulnerable livestock populations before a hazardous event occurs,
therefore enabling actions to be carried out to mitigate potential harm, viz. outbreak, and
sometimes providing an opportunity to prevent the outbreak or incidence from occurring
(Climate, ecosystem and infectious diseases; http://www.nap.edu/catlog/10025.html)
(accessed on 10 February 2021). In contrast, to date, very little attention is received to the
development of early warning or risk prediction worldwide for livestock infectious disease
outbreaks. The electronic Disease Early Warning System (eDEWS) is the only system in
Yemen that consistently provides data on infectious diseases, although the reliability and
prompt service of responses are the major challenges to its performance [49].

http://www.nap.edu/catlog/10025.html
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Although district-wise early warning of disease occurrence was provided, the lack
of awareness, risk identification, and inadequate health care might be responsible for the
recurrence of the disease. Machine learning models have been confirmed as successful at
mining data from multiple sources to recognize the geographic hotspot and risk vulnerable
to outbreaks. Further, it requires contributions from multidisciplinary experts, including
meteorologists, epidemiologists, biologists and ecologists, veterinary professionals, public
health professionals, policymakers, and local communities on prevention, as well as control
of the disease to avoid risk and save the livestock population. This can help with averting
economic loss, specifically to protect the livelihood of livestock farmers [16].

The primary goal of early warning or risk prediction is to give dairy farmers and
veterinarian medical experts quite enough prior warning of the probable risk of a disease
outbreak in a specific region as possible. This will increase the number of feasible alternative
responses. The fundamental problem concerning early warning is that reduced predictive
accuracy generally results from longer timeframes. Although it is extremely unlikely that
a precise disease outbreak forecast would be achieved purely based on environmental
observations and host dispersal, this data could be intended to transmit a warning that
environmental circumstances are appropriate for disease outbreaks. An early warning
system must be considered as an information system designed to aid the relevant regional
and national organizations make a decision and also to assist susceptible dairy farmer
communities in intervening to reduce the consequences of imminent outbreaks of livestock
disease [55]. The attention must not only be on improving livestock disease monitoring and
predictions, but also on improving the coordination efforts among the relevant stakehold-
ers, viz., scientific organizations that predict the disease outbreak, the national and local
disease management agencies that assess the risk and develop response strategies, disease
communication system that facilitate the timely distribution of information impending risk,
and risk scenarios or pattern and preparedness measures to vulnerable communities. A
key data source for acquiring disease-related information and tracking disease outbreaks is
indeed the livestock disease reporting system. ICAR-NIVEDI maintains the database on
livestock disease reporting system at village resolution, reported from its own 30 network
units in each state, and provides medium-term forecasts that include anthrax as well.

Regardless of the effectiveness of disease and climate modeling techniques, there
are still a lot of unanswered questions. The model’s reliability could be increased by
emphasizing this limitation and the value of better data. Information processed through
early warning would be effective and transformative because of its capability to foresee
infectious disease outbreaks and detect a sudden increase in any livestock diseases to po-
tentially stop an epidemic before it spreads. However, under-reporting and non-reporting
of disease outbreaks in India is a major threat to the effective implementation of an early
warning system.

5. Conclusions

Early warning or risk prediction promotes the systematic epidemiological surveillance
activities that are ongoing, the systematic monitoring of climate that uses standardized
routines for quality assurance, and helps provide the timely analysis and dissemination of
information. The key challenge for an Indian researcher and policy maker is to establish a
relationship between El Niño and La Niña with other weather parameters as it is uncertain
with an impact example severe drought in India. As per a literature search on this subject,
the timing, intensity, and spatial spread of El Niño and La Niña seem to influence Indian
monsoon rainfall, but the exact correspondence and its magnitude still appear uncertain.
This study tries to explore the relationship of EL Nina and La Niña with other weather
parameters by incidence, spread, and prediction of Anthrax diseases in Karnataka. The
ecological evidence such as raising air temperature, potential evaporation rate, wind speed,
EVI, NDVI, and specific humidity from the present analysis exhibited that anthrax is a
significantly major disease in the study area. Prediction of livestock diseases in advance,
especially anthrax, is an important task. Machine learning plays a vital role in the prediction
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of disease risk in the large amount of data annotated with climate and host parameters.
The prediction accuracy of machine learning models will be improved by increasing the
amount of historical data. Risk prediction and maps developed in the present study
serve as beneficial tools for policymakers, veterinarians, and livestock farmers to take
necessary healthcare measures against the spread of the disease. In this study, a novel
statistical approach for risk mapping improves the accuracy of short-term risk forecasts.
Early warning or risk prediction developed with a layer of R0 superimposed on a risk map
helps in the preparedness for the disease occurrence, precautionary measures before the
spread of the disease, and finding an estimate of the population proportion that must be
vaccinated to eliminate the infection from that population.

Author Contributions: Methodology and formal analysis: K.P.S.; conceptualization and data cu-
ration: S.B.; writing original draft: S.B.; review and editing: K.P.S., S.P., C.S., S.P.K. and R.G.A.;
formatting and editing: U.B.I. and B.A.P.; supervision: P.T.S., C.A.C. and R.G.A.; visualization: M.K.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: This study does not involve any animals or humans directly
and only data on some outbreaks were obtained, hence ethical approval was not necessary.

Informed Consent Statement: Not applicable.

Data Availability Statement: Available on request.

Acknowledgments: Authors thank the Dept. of Animal Husbandry and Veterinary Services, Gov-
ernment of Karnataka for sharing the data on the prevalence of anthrax. We are also grateful to DG
and DDG (AS), ICAR and Director, ICAR-NIVEDI for their constant support, guidance and necessary
assistance during the study.

Conflicts of Interest: The authors have no conflict of interest.

References
1. Serkan, O.; Selcen, O.; Serhan, S. Anthrax—An overview. Med. Sci. Monit. 2003, 9, 276–283.
2. Jayachandran, R. Anthrax: Biology of Bacillus anthracis. Curr. Sci. 2002, 82, 1220–1226.
3. Jocelyn, M.; Larissa, L.; Alim, A.; Yerlan, P.; Mathew, V.E.; Jason, K.B. Ecological Niche Modelling of the Bacillus anthracis A1.a

sub-lineage in Kazakhstan. BMC Ecol. 2011, 11, 32.
4. Turnbull, P.C.B. Guidelines for the Surveillance and Control of Anthrax in Humans and Animals; WHO/EMC/ZDI/98.6, Wiltshire SP4

0JG; World Health Organization: Geneva, Switzerland, 1998.
5. Gombe, N.T.; Nkomo, B.M.M.; Chadambuka, A.; Shambira, G.; Tshimanga, M. Risk factors for contracting anthrax in Kuwirirana

ward, Gokwe North, Zimbabwe. Afr. Health Sci. 2010, 10, 159–164.
6. Madeleine, C.T.; Angel, G.M.; Remi, C.; Joy, S.G. Climate drivers of vector-borne diseases in Africa and their relevance to control

programmes. Infect. Dis. Poverty 2018, 7, 81.
7. Myers, M.F.; Rogers, D.J.; Cox, J.; Flahault, A.; Hay, S.I. Forecasting Disease Risk for Increased Epidemic Preparedness in Public.

Health Adv. Parasitol. 2000, 47, 309–330.
8. Michael, G.W.; de Smalen, A.W.; Siobhan, M.M. Climatic influence on anthrax suitability in warming northern latitudes. Sci. Rep.

2018, 8, 9269.
9. Troccoli, A. Review Seasonal climate forecasting. Metrol. Appl. 2010, 17, 251–268. [CrossRef]
10. Kriss, A.B.; Paul, P.A.; Madden, L.V. Variability in Fusarium Head Blight Epidemics in Relation to Global Climate Fluctuations as

Represented by the El Niño-Southern Oscillation and Other Atmospheric Patterns. Ecol. Epidemiol. 2012, 55, 64. [CrossRef]
11. Malay, P.; Poonam, S.; Kumar, G.; Ojha, V.P.; Dhiman, R.C. El Niño Southern Oscillation as an early warning tool for dengue

outbreak in India. BMC Public Health 2020, 20, 1498.
12. Cane, M.A. The evolution of El Niño, past and future. Earth Planet. Sci. Lett. 2005, 230, 227–240. [CrossRef]
13. Saini, S.; Ashok, G. El Niño and Indian Droughts: A Scoping Exercise; No. 276, Working Paper; Indian Council for Research on

International Economic Relations (ICRIER): New Delhi, Indian, 2014.
14. Cherian, S.; Sridhara, S.; Manoj, K.N.; Gopakkali, P.; Ramesh, N.; Alrajhi, A.A.; Dewidar, A.Z.; Mattar, M.A. Impact of El Niño

Southern Oscillation on Rainfall and Rice Production: A Micro-Level Analysis. Agronomy 2021, 11, 1021. [CrossRef]
15. Anna, M.S.; Rachel, L. Climate and Non-Climate Drivers of Dengue Epidemics in Southern Coastal Ecuador. Am. J. Trop. Med.

Hyg. 2013, 88, 971–981.
16. Pinto, J.; Bonacic, C.; Hamilton-West, C.; Romero, J.; Lubroth, J. Climate change and animal diseases in South America. Rev. Sci.

Tech. 2008, 27, 599–613. [CrossRef] [PubMed]

http://doi.org/10.1002/met.184
http://doi.org/10.1094/PHYTO-04-11-0125
http://doi.org/10.1016/j.epsl.2004.12.003
http://doi.org/10.3390/agronomy11061021
http://doi.org/10.20506/rst.27.2.1813
http://www.ncbi.nlm.nih.gov/pubmed/18819680


Zoonotic Dis. 2022, 2 289

17. Debashish, D. Machine learning algorithms for disease prediction: A methodological Review in Biomedical. In Proceedings of
the 3rd Global Conference on Computing and Media Technology, Kuala Lumpur, Malaysia, 17–18 July 2019.

18. Carella, E.; Orusa, T.; Viani, A.; Meloni, D.; Borgogno-Mondino, E.; Orusa, R. An Integrated, Tentative Remote-Sensing Approach
Based on NDVI Entropy to Model Canine Distemper Virus in Wildlife and to Prompt Science-Based Management Policies.
Animals 2022, 12, 1049. [CrossRef]

19. Orusa, T.; Mondino, E.B. Exploring Short-term climate change effects on rangelands and broad-leaved forests by free satellite
data in Aosta Valley (Northwest Italy). Climate 2021, 9, 47. [CrossRef]

20. Orusa, T.; Orusa, R.; Viani, A.; Carella, E.; Mondino, E.B. Geomatics and EO data to support wildlife diseases assessment at
landscape level: A pilot experience to map infectious keratoconjunctivitis in chamois and phenological trends in Aosta Valley
(NW Italy). Remote Sens. 2020, 12, 3542. [CrossRef]

21. Ward, M.M. Estimating disease prevalence and incidence using administrative data: Some assembly required. J. Rheumatol. 2013,
40, 1241–1243. [CrossRef]

22. Ranganath, R.N.; Jayaraman, V.; Roy, P.S. Remote sensing applications: An overview. Curr. Sci. 2007, 93, 1747–1766.
23. Suma, A.P.; Suresh, K.P.; Gajendragad, M.R.; Kavya, B.A. Forecasting Anthrax in Livestock in Karnataka State using Remote

Sensing and Climatic Variables. Int. J. Sci. Res. 2015, 6, 1891–1897.
24. Justice, C.O.; Townshend, J.R.G.; Vermote, E.F.; Masuoka, E.; Wolf, R.E.; Saleous, N.; Roy, D.P.; Morisette, J.T. An overview of

MODIS Land data processing and product status. Remote Sens. Environ. 2002, 83, 3–15. [CrossRef]
25. Hay, S.I.; Tatem, A.J.; Graham, A.J.; Goetz, S.J.; Rogers, D.J. Global Environmental Data for Mapping Infectious Disease

Distribution. Adv Parasitol. 2006, 62, 37–77. [PubMed]
26. Margaret, D.; Rwego, I.B.; Ndimuligo, S.A.; Travis, D.A.; Mwakapeje, E.R.; Craft, M.; Asiimwe, B.; Alvarez, J.; Ayebare, S.; Pelican,

K. Environmental determinants influencing anthrax distribution in Queen Elizabeth Protected Area, Western Uganda. PLoS ONE
2020, 15, e0237223.

27. Horvath, D.J.; Reid, R.L. Indirect effects of soil and water on Animal health. Sci. Total Environ. 1984, 34, 143–156. [CrossRef]
28. Lawrence, N.K.; Adamson, S.M.; Christopher, C.A.; Immo, K. Modelling the effect of malaria endemicity on spatial variations in

childhood fever, diarrhoea and pneumonia in Malawi. Int. J. Health Geogr. 2007, 6, 33.
29. Songchitruksa, P.; Zeng, X. Getis–Ord Spatial Statistics to Identify Hot Spots by Using Incident Management Data. Transp. Res.

Rec. 2010, 2165, 42–51. [CrossRef]
30. Tobler, W.R. A Computer movie simulating urban growth in the detroit region. Econ. Geogr. 1970, 46, 234–240. [CrossRef]
31. Michael, J.; Sara, G.; Caitlin, K. Spatial Modeling in Environmental and Public Health Research. Int. J. Environ. Res. Public Health.

2010, 7, 1302–1329.
32. Muluken, A.; Abera, K.; Alemayehu, W.; Bagtzoglou, A.C. Childhood Diarrhea Exhibits Spatiotemporal Variation in Northwest

Ethiopia: A SaTScan Spatial Statistical Analysis. PLoS ONE 2015, 10, e0144690.
33. Marlize, C.; Michael, C.; Aaron, M.M.; Gerdalize, K.; Maureen, C.; David, N.D. Using the SaTScan method to detect local malaria

clusters for guiding malaria control programmes. Malar J. 2009, 8, 68.
34. Shahera, B.; Wenbiao, H.; Cameron, H.; Yuming, G.; Mohammad, Z.I.; Shilu, T. Space-time clusters of dengue fever in Bangladesh.

Trop. Med. Int. Health 2012, 17, 1086–1091.
35. Izenman, A.J. Linear Discriminant Analysis. In Springer Texts in Statistics; Springer: Berlin/Heidelberg, Germany, 2013.
36. Pankaj, M.; Ching-Hao, W.; Alexandre Day, G.R.; Clint, R.; Marin, B.; Charles, K.F.; David, J.S. A high-bias, low-variance

introduction to Machine Learning for physicists. Phys. Rep. 2019, 810, 1–124.
37. Omri, A.; Asaf, T.; Ronen, K. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic

(TSS). J. Appl. 2006, 43, 1223–1232.
38. Andrius, V.; Emma, G.; Ellen, P.; Alexander, J.C. Machine learning algorithm validation with a limited sample size. PLoS ONE

2019, 14, e0224365.
39. Johnson, K.; Vinay, K.K.; Phridviraj, M.S.B.; Shaik, R. Reducing Overfitting Problem in Machine Learning Using Novel L1/4

Regularization Method. In Proceedings of the Fourth International Conference on Trends in Electronics and Informatics,
Tirunelveli, India, 16–18 April 2020.

40. Jake, L.; Martin, K.; Naomi, A. Model selection and overfitting. Nat. Methods 2016, 13, 703–704.
41. Farzin, S.; Lalit, K.; Mohsen, A. Assessing Accuracy Methods of Species Distribution Models: AUC, Specificity, Sensitivity and

the True Skill Statistic. Glob. J. 2018, 18, 1–13.
42. Ferri, C.; Hernández-Orallo, J.; Modroiu, R. An experimental comparison of performance measures for classification. Pattern

Recognit. Lett. 2009, 30, 27–38. [CrossRef]
43. Li, Y.; Wang, L.-W.; Peng, Z.-H.; Shen, H.-B. Basic reproduction number and predicted trends of coronavirus disease 2019 epidemic

in the mainland of China. Infect. Dis. Poverty. 2020, 9, 1–13. [CrossRef]
44. Mahmud, R.; Patwari, H.A.F. Estimation of the Basic Reproduction Number of SARS-CoV-2 in Bangladesh Using Exponential

Growth Method. Infect Dis. Poverty 2020, 9, 94.
45. Froda, S.; Leduc, H. Estimating the basic reproduction number from surveillance data on past epidemics. Math. Biosci. 2014, 256,

89–101. [CrossRef]
46. Obadia, T.; Haneef, R.; Boëlle, P.-Y. The R0 package: A toolbox to estimate reproduction numbers for epidemic outbreaks. BMC

Med. Inform. Decis. Mak. 2012, 12, 147. [CrossRef] [PubMed]

http://doi.org/10.3390/ani12081049
http://doi.org/10.3390/cli9030047
http://doi.org/10.3390/rs12213542
http://doi.org/10.3899/jrheum.130675
http://doi.org/10.1016/S0034-4257(02)00084-6
http://www.ncbi.nlm.nih.gov/pubmed/16647967
http://doi.org/10.1016/0048-9697(84)90046-9
http://doi.org/10.3141/2165-05
http://doi.org/10.2307/143141
http://doi.org/10.1016/j.patrec.2008.08.010
http://doi.org/10.1186/s40249-020-00704-4
http://doi.org/10.1016/j.mbs.2014.08.007
http://doi.org/10.1186/1472-6947-12-147
http://www.ncbi.nlm.nih.gov/pubmed/23249562


Zoonotic Dis. 2022, 2 290

47. Xiong, Y.; Bingham, D.; Braun, W.J.; Hu, X.J. Moran’s I statistic-based nonparametric test with spatio-temporal observations. J.
Nonparametric Stat. 2019, 31, 244–267. [CrossRef]

48. Hamid, R.K.; Seyed, H.H.; Mehrdad, F.; Mohammad, A.H.; Nasir, A. Early warning system models and components in emergency
and disaster: A systematic literature review protocol. Syst. Rev. 2019, 8, 315.

49. Fekri, D.; Kamran, A.; Claudia, B.; Claire, J.S.; Ali, A.; Albrecht, J. Assessment of electronic disease early warning system for
improved disease surveillance and outbreak response in Yemen. BMC Public Health 2020, 20, 1422.

50. Ian, T.K.; Lile, M.; Nikoloz, T.; Julietta, M.; Lela, B.; Paata, I.; Shota, T.; Jason, K.B. Evidence of Local Persistence of Human Anthrax
in the Country of Georgia Associated with Environmental and Anthropogenic Factors. PLoS Negl. Trop. Dis. 2013, 7, 9.

51. Sean, B.; Thuillier, G.; Barlier, F. The DTM-2000 empirical thermosphere model with new data assimilation and constraints at
lower boundary: Accuracy and properties. J. Atmos. Sol.-Terr. Phys. 2003, 65, 1053–1070.

52. Dragon, D.C.; Rennie, R.P. The ecology of anthrax spores: Tough but not invincible. Can. Vet. J. 1995, 36, 295–301.
53. Gunaseelan, L.; Rishikesavan, R.; Adarsh, T.; Baskar, R.; Hamilton, E.; Kaneene, J.B. Temporal and geographical distribution of

animal anthrax in Tamil Nadu state, India. Tamilnadu J. Vet. Anim. Sci. 2011, 7, 277–284.
54. Turner, W.C.; Imologhome, P.; Havarua, Z.; Kaaya, G.P.; Mfune, J.K.E.; Mpofu, I.D.T.; Getz, W.M. Soil ingestion, nutrition and the

seasonality of anthrax in herbivores of Etosha National Park. Ecosphere 2013, 4, 1–19. [CrossRef]
55. Bylaiah, S.; Shedole, S.; Suresh, K.P.; Gowda, L.; Shivananda, B.; Shivamallu, C.; Patil, S.S. Disease Prediction Model to Assess the

Impact of Changes in Precipitation Level on the Risk of Anthrax Infectiousness among the Livestock Hosts in Karnataka, India.
Int. J. Spec. Educ. 2022, 37, 711–727.

http://doi.org/10.1080/10485252.2018.1550197
http://doi.org/10.1890/ES12-00245.1

	Introduction 
	Materials and Methods 
	Data Collection 
	Disease Incidence and ENSO Events Classification 
	Livestock Data 
	Meteorological Data 
	Remote Sensing Data 
	Soil Profile 

	Spatial Endemicity 
	Getis-Ord Gi* Spatial Statistics to Identify Hotspots (Spatial Autocorrelation) 
	Space-Time Cluster Analysis 
	Identifying Risk Factors by Linear Discriminant Analysis 
	Risk Modelling and Mapping 
	Basic Reproduction Number (R0) 
	Exponential Growth Rate (EG) 
	Maximum Likelihood Estimate (ML) 
	Attack Rate Estimate (AR) 

	Statistical Software 

	Results 
	Temporal Distribution of Weather Parameters 
	Spatial Endemicity of Anthrax 
	Spatial Autocorrelation of Anthrax 
	Space-Time Cluster Analysis of Anthrax 
	Linear Discriminant Analysis of Anthrax 
	Anthrax Risk Assessment and Estimation 
	Anthrax Risk Prediction and Mapping 
	Estimation of Basic Reproduction Number (R0) of Anthrax 

	Discussion 
	Conclusions 
	References

